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SUMMARY

In less than two decades, nonlinear model predictive control has evolved from a conceptual framework to
an attractive, general approach for the control of constrained nonlinear processes. These advances were
realized both through better understanding of stability and robustness properties as well as improved
algorithms for dynamic optimization. This study focuses on recent advances in optimization formulations
and algorithms, particularly for the simultaneous collocation-based approach. Here, we contrast this
approach with competing approaches for online application and discuss further advances to deal with
applications of increasing size and complexity. To address these challenges, we adapt the real-time iteration
concept, developed in the context of multiple shooting (Real-Time PDE-Constrained Optimization. SIAM:
Philadelphia, PA, 2007, 25-52, 3-24), to a collocation-based approach with a full-space nonlinear
programming solver. We show that straightforward sensitivity calculations from the Karush-Kuhn-
Tucker system also lead to a real-time iteration strategy, with both direct and shifted variants. This
approach is demonstrated on a large-scale polymer process, where online calculation effort is reduced by
over two orders of magnitude. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nonlinear model predictive control (NMPC) has evolved over the past decade into an efficient
method for process control of large industrial systems. This approach has the key advantage
that it is a general purpose multivariable control strategy that can handle constrained, nonlinear
systems directly. On the other hand, efficient dynamic optimization strategies are needed for
online, time critical solutions. Recent developments in large-scale nonlinear programming
(NLP) algorithms have enabled the online solution of these problems. In particular, in a recent
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FAST NMPC IMPLEMENTATIONS AND RIGOROUS MODELS 801

IFAC workshop several industrial applications were presented including contributions from
Exxon Mobil [1], BASF [2] and ABB [3]. In addition to enabling NLP solvers, there is also a
much better understanding of NMPC stability and robustness properties and associated
dynamic optimization formulations that provide them [4].

Moreover, with the ability to solve dynamic optimization problems online, the separation
between model predictive control and real-time optimization begins to disappear. A
comprehensive treatment of dynamic real-time optimization is provided in [5], and it is clear
that with improved optimization formulations and algorithms, the role of NMPC can be greatly
expanded. On the other hand, time-critical solutions demand better enabling algorithms and
their implementations. Also, the need to consider complex dynamic optimization applications
leads to the challenging and difficult task of maintaining controller stability and performance. In
particular, both of these properties are strongly affected by the issue of computational delay. A
frequent assumption is that online optimization for NMPC must be performed quickly relative
to the process dynamics. If not, both the performance and stability characteristics deteriorate.
The former was noted in an NMPC implementation of a laboratory reactor [6] as well as in
numerous industrial studies. Deterioration of stability was noted in [7], where a detailed stability
analysis is provided. To address this issue, Diehl et al. [8] and Bock et al. [9] developed a real-
time iteration in the context of multiple shooting and Successive Quadratic Programming. A
related sensitivity-based approach was also developed for sequential dynamic optimization in
[10]. This study extends the previous work to a fully simultaneous optimization strategy based
on collocation on finite elements and a sparse barrier NLP algorithm.

The next section provides a brief overview of off-line dynamic optimization strategies. Here,
we assess these computational strategies in terms of computational cost and complexity, and
focus on characteristics of the simultancous approach. The third section discusses the NLP
solver, IPOPT [11], as well as its adaptation to NLP sensitivity. These sensitivity calculations
provide the basis for a fast NMPC strategy, which is developed in the fourth section. The fifth
section provides a demonstration of this particular real-time iteration approach on a large-scale
industrial polymer process, with direct and shifted variants, while the last section concludes the
paper and presents areas for future work.

2. OFF-LINE SOLUTION OF DYNAMIC OPTIMIZATION PROBLEMS

For the purpose of this study, we consider the optimization problem stated in the following
form:

N
min Z o(z(t), uy) (1)
k=1
st O o). 1 el nl

g(zr(2), yi(0),u) = 0

zk(tk) = zip1(te),  z1(to) = 2o
uf <w(y<uf,  yE<m(<yY
<z()<z, k=1,...,N
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where z;(f) € R'™ is the vector of state variables, u; € R™ is the vector of manipulated variables
and yr(7) € MW" is a vector of algebraic variables. These are functions of the scalar ‘time’
parameter ¢ € [ty, fs]. As constraints we have the differential and algebraic equation (DAE)
model which we assume without loss of generality as index one.

A number of approaches can be taken to solve (1). Until the 1970s, these problems were
solved using an indirect or variational approach, based on the first-order necessary conditions for
optimality obtained from Pontryagin’s Maximum Principle [12,13]. For problems without
inequality constraints, these conditions can be formulated and solved as a two-point boundary
value problem. However, if the problem requires the handling of active inequality constraints,
finding the correct switching structure as well as suitable initial guesses for state and adjoint
variables is often very difficult. This limitation has made the indirect approach less popular for
NMPC applications.

On the other hand, direct methods that apply NLP solvers can be separated into two groups,
sequential and the simultaneous strategies. In sequential methods, also known as control vector
parameterization, the control variables are discretized as uy. Often they are represented as
piecewise polynomials [14], and optimization is performed with respect to these controls. Given
initial conditions and a set of control parameters, the DAE model is solved for k=1,...,N
within the inner loop of the NLP solver; the control variables are then updated by the NLP
solver itself. Gradients of the objective function with respect to the control coefficients and
parameters are calculated either from direct sensitivity equations of the DAE system or by
integration of the adjoint equations. Sequential strategies are relatively easy to construct and to
apply as they incorporate reliable DAE solvers (e.g. DASSL, DASOLV, DAEPACK) as well as
NLP solvers (NPSOL, SNOPT) as components. On the other hand, repeated numerical
integration of the DAE model is required, which may become time consuming for large-scale
problems. Moreover, it is well known that sequential approaches have properties of single
shooting methods and cannot handle open-loop instability [15]. Finally, path constraints can be
handled only approximately, within the limits of the control parameterization.

Multiple shooting is a simultaneous approach that inherits many of the advantages of
sequential approaches. As seen in (1), the time domain is partitioned into N smaller time
elements and the DAE models are integrated separately in each element [9]. Control variables
are parameterized as in the sequential approach and gradient information is obtained for both
control variables as well as initial conditions of the states variables in each element. Finally,
equality constraints are added in the NLP to link the elements with state profiles that are
continuous across each element. As with the sequential approach, bound constraints for states
and controls can be imposed directly at the grid points #;. For piecewise constant or linear
controls, this approximation is accurate, but bounds for the states may be violated between grid
points.

In the simultaneous collocation approach, also known as direct transcription, we discretize
both the state and control profiles in time using collocation on the finite elements k = 1,..., N.
This approach corresponds to a particular implicit Runge—Kutta method with high-order
accuracy and superior stability properties. Also known as fully implicit Gauss forms, these
methods are usually too expensive (and rarely applied) as initial value solvers. However, for
boundary value problems and optimal control problems, which require implicit solutions
anyway, this discretization is an inexpensive way to obtain accurate solutions. On the other
hand, this approach also leads to large-scale NLP problems that require efficient optimization
strategies [16, 17]. Because these methods directly couple the solution of the DAE system with
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the optimization problem, the DAE system is solved only once, at the optimal point, and,
therefore, can avoid intermediate solutions that may not exist or may require excessive
computational effort. In the resulting approach, the control variables are discretized at the same
level as the state variables and, under mild conditions, (see [18, 19]) the Karush—Kuhn-Tucker
(KKT) conditions of the simultaneous NLP are consistent with the optimality conditions of the
discretized variational problem, and convergence properties can be shown. Moreover, as with
multiple shooting approaches, simultaneous approaches can deal with instabilities that occur for
a range of inputs. Finally, simultaneous methods allow the direct enforcement of state and
control variable constraints, at the same level of discretization as the state variables of the DAE
system.

Nevertheless, simultaneous strategies require the solution of large nonlinear programs, and
specialized full-space methods are often preferred for their efficient solution. Second derivatives
of the objective and constraint functions along with measures to deal with directions of negative
curvature in the Hessian matrix [11] are essential for the superior performance of this method.
A detailed description of the simultaneous approach is provided in [20] for full-space methods,
along with mesh refinement strategies and case studies in mechanics and aerospace.

2.1. Comparison of dynamic optimization strategies

Table I lists the complexity of the major algorithmic steps for dynamic optimization of (1) using
the sequential, multiple shooting and simultaneous collocation strategies. While a detailed
comparison is often problem dependent, this table allows a brief overview of the computation
effort for each method as well as a discussion of distinguishing features. Step (i) requires
sequential and multiple shooting methods to invoke a DAE solver that integrates forward in
time and solves nonlinear equations at each time step. The integration is performed with a
Newton solver at each time step, and often with a sparse matrix routine embedded within the
Newton solver. Sparse factorization of the Newton step occurs at a cost that scales little more
than linearly with problem size. For the simultaneous approach, this step is replaced in the
optimization steps, (v) and (vi). In Step (ii) both multiple shooting and sequential approaches
obtain reduced gradients through direct sensitivity calculations of the DAE system. While this
calculation is often implemented efficiently, the cost scales linearly with the number of inputs
times the size of the DAE system since previous factorizations can be reused. With the
sequential approach, the number of inputs is n,N; with multiple shooting, sensitivity is
calculated separately in each time step and the number of inputs is n, +n, For the
simultaneous approach, the gradient calculation (through automatic differentiation) scales with
the problem size.

Table I. Computational complexity/NLP iteration (with n,, = n. + n, state variables, n, manipulated
variables, N time steps, 2<a<3, 1 <f<2).

Sequential Multiple shooting Simultaneous collocation
i. Integration nf N nf N —
ii. Sensitivity 7,1y, N2 (i + 1,)N (ny + )N
iii. Hessian evaluation ny,niN? 1y (g + 1,)° N (ny + 1) N
iv. Decomposition — nN —
v. Factorization (n,N)* (n,N)* (1 + n)NY?
vi. Backsolve — — (ny, + n,)N
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Step (i) is optional as NMPC often uses a Gauss—Newton approximation for second
derivatives. This approximation is a reasonable choice for quadratic objectives and requires
minimal additional computational cost. However, for economic objectives, exact second
derivatives are preferred and extend from the sensitivity calculation. For both multiple shooting
and sequential approaches, the cost of reduced Hessian’s scales roughly with the number of
input times the sensitivity cost. In addition, multiple shooting executes a decomposition (Step
(iv)) that requires projection of the Hessian to dimension #, NV, through the factorization of dense
matrices. With the collocation approach, the Hessian remains very sparse and its calculation
(through automatic differentiation) scales with the problem size. Steps (v) and (vi) deal with the
optimization step determination; sequential and multiple shooting methods require the solution
of a quadratic program (QP) with n,N variables, and dense constraint and reduced Hessian
matrices. These require factorizations (cubic complexity) and updates (quadratic complexity) to
solve the QP. The QP also chooses an active constraint set, which is a combinatorial step.
Nevertheless, choosing the active set is often accelerated in the QP by a warm start. On the other
hand, simultaneous collocation applies a barrier approach where the active set is determined
from the solution of nonlinear (KKT) equations through a Newton method. The corresponding
Newton step is obtained through factorization of a sparse linear system (v) and a backsolve,
Step (vi).

Table I shows that as the number of inputs 7, /N increases, one sees a significant advantage of
the simultaneous collocation approach; these complexity advantages are aided significantly by
the barrier NLP solver. To conclude this section, we briefly describe the real-time iteration
NMPC approach recently developed with multiple shooting.

2.2. Online vs background calculations

The real-time iteration strategy was developed in [21] in order to overcome off-line
computational costs for dynamic optimization. This approach was developed in the context
of multiple shooting, but the stability analysis [21, 22] is general and applies to simultancous and
(open-loop stable) sequential approaches as well. We adapt this approach here by noting that
when the NLP cannot be solved in one sampling instant, it is solved in ‘background’ for an
initial condition ‘close’ to the measured (or estimated) state. Once the current state is obtained, a
perturbed problem is solved efficiently to update the NLP solution. The perturbed problem can
be formulated in two ways. To solve (1) for the ¢th sampling time, the initial condition is
zo(tg) = Z(£), the measured state. In the direct or nonshift strategy, an N-element problem is
derived from the solution of this problem but with the initial condition, zy(#) perturbed to
Z(€ + 1), the measured state at the next sampling time. On the other hand, the shift strategy
considers the solution of a perturbed problem with N — 1 elements. Here, the initial condition is
z1(¢1) = Z(€ + 1) because the first element is discarded, and gradient and Hessian information for
the next elements are shifted backward, with control variable values replicated for the Nth
element. In both the cases, the only online cost is Step (v) in Table I.

3. NLP ALGORITHM AND SENSITIVITY

To develop and extend the real-time iteration framework, we first consider methods for the
solution of the NLP resulting from the simultaneous collocation formulation. The discretized
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FAST NMPC IMPLEMENTATIONS AND RIGOROUS MODELS 805

problem derived from (1) can be rewritten for illustration in the following form:
min f(x,p) s.t. c(x,p)=0, x=0 2)

with the parameter vector p. As this is a large-scale NLP with potentially many degrees of
freedom and inequalities, we apply the TPOPT algorithm [11] for its efficient solution. The
algorithm follows a barrier approach, where the nonnegativity constraint is replaced by
logarithmic barrier terms and added to the objective function to give:

min g(x,p) = f(x,p) = Y _In(x?) st e(x,p) =0 (€)
i=1

with a barrier parameter u > 0. Here, x) denotes the ith component of the vector x. Since the
objective function of this barrier problem becomes arbitrarily large as x' approaches zero, a
local solution x(u) of this problem lies in the positive orthant, x(u) > 0. Under mild conditions,
x(u) converges to a local solution of the original problem (2) as u — 0; a strategy for solving the
original NLP is to solve a sequence of barrier problems (3), with index /, for decreasing values of
u;. The IPOPT code follows this approach and applies a Newton method to the KKT conditions
derived from (3), leading to solution of the following sparse linear system at iteration j:

VV/' Aj -1 Ax Vf(Xj) + Aj/lj -V
AT 0 0 ||Ar|=— e(x;) (4)
Vi 0 X ]LAv XjVie — e

where we define e =[1,1,..., l]T, X = diag(x), V = diag(v), the Hessian W; = V. L(x;, 4, ),
the Lagrange function L(x,/,v) = f(x)+ ¢(x)"2 — xTv and Aj = Ve(x;). IPOPT solves this
system by first solving a smaller symmetric system that results from eliminating the last block
row. Exact first and second derivatives for this method can be evaluated in a number of ways,
including automatically through the AMPL interface [23]. As a result, local convergence of the
Newton method is fast and global convergence is promoted by a novel filter line search strategy.
More information on IPOPT can be found in [11].

3.1. IPOPT and NLP sensitivity

The barrier NLP algorithm also allows for consideration of perturbed or parametric NLPs.
Here, we summarize a set of well-known results both for convergence of the barrier method as
well as related sensitivity calculations. We first relate the solutions from the IPOPT algorithm to
the solution of (2). Following this, we discuss the properties of sensitivity information from
IPOPT.

Property 1 (properties of the barrier trajectory)

Consider problem (2) with p = py and let f(x, py) and ¢(x, py) be at least twice differentiable with
respect to x. Let x(pg) be a KKT point, where the linear independence constraint qualification
(LICQ) holds, strict complementarity holds with the bound multipliers v(p) satisfying the KKT
conditions, and there exists @ > 0 such that ¢* W (x(po), A(po))g=w||q||* for equality constraint
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multipliers A(po) satisfying the KKT conditions and all nonzero ¢ € R™ in the nullspace of the
active constraint normals.

If we now solve a sequence of problems (3) with y;, — 0, then there is at least one subsequence
of unconstrained minimizers (x(y;)) of the barrier function converging to x(py). Also, for every
convergent subsequence, the corresponding sequence of barrier multiplier approximations is
bounded and converges to multipliers satisfying the KKT conditions for x(pg), a unique,
continuously differentiable vector function x(u) of the minimizers of (3) exists for >0 in a
neighbourhood of u =0 and ||x(x,) — x(po)ll = O(p,) with lim, o+ x(1t) = x(po).

Proof
The proof follows by noting that LICQ implies MFCQ and invoking Theorem 3.12 and Lemma
3.13 in [24]. ]

This property indicates that nearby solutions of (3) provide useful information for bounding
properties for (3) for small positive values of u. For the parametric NLP problem (2) with a
solution at p = po, we would like to compute the sensitivities dx(py)/dp and a perturbed solution

Ax = (8x(po)/3p) (p — po).

Property 2 (sensitivity properties)

For problem (2) assume that f(x,p) and c(x,p) are m times differentiable in p and m + 1
times differentiable in x. Also, let the assumptions of Property 1 hold for problem (2) with
P = po, then at the solution: x(pg) is an isolated minimizer and the associated multipliers A(pg)
and v(pg) are unique. Also, for some p in a neighbourhood of py, there exists an m times
differentiable function s(»)' = [x(»)* A(»)T v(p)'] that corresponds to a locally unique
minimum for (3), and for p near py the set of active inequalities is unchanged and
complementary slackness holds.

Proof
The results follow directly from Theorem 3.2.2 and Corollary 3.2.5 in [25]. O

We now relate sensitivity results between (3) and (2) with the following result.

Property 3 (barrier sensitivity properties)

For problem (3) assume that f(x, p) and c(x, p) are m times differentiable in p and m + 1 times
differentiable in x. Also, let the assumptions of Property 1 hold for problem (2), then at the
solution of (3) with a small positive u, x(u, pg) is an isolated minimizer and the associated barrier
multipliers A(u, po) and v(u, pg) are unique, and for some p in a neighbourhood of p, there exists
an m times differentiable function s(u,p)" = [x(1, p)* A, p)* (i, p)T] that corresponds to a
locally unique minimum for (3). Finally, lim,_¢ -, s(tt, p) = s(po).

Proof

The results follow from Theorem 6.2.1 and Corollary 6.2.2 in [25]. These were originally proved
for a mixed penalty function, but the proofs are easily modified to deal with barrier
functions. ]
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Calculation of these sensitivities now proceeds from the implicit function theorem applied to
the optimality conditions of (3) at py. Defining the quantities,

W(s(u,po))  A(x(u,po))  —1 VopL(s(i, po)) "
M(s(t, po) = | A(x(, po))T 0 0 |» NyGs(uwpo) = | Vye(x(i, po)"
V(po) 0 X(po) 0

we see that if the assumptions of Property 1 hold, M(s(u, po)) is nonsingular and the sensitivities
can be calculated from:

d T
% M (st o)) N (511 p0) 5)

For small values of p and ||p — pol|, it can be shown from the above properties [25] that

s(tt, p) = =M (s(tt, po)) ™' Np(s(it, po))(p — po) + Ollp = poll? (6)

The sensitivity calculation in (6) is inexpensive and requires only a single factorization of
M(s(u, po)) as well as a backsolve for each right-hand side. Furthermore, the implementation of
this calculation is straightforward in the current IPOPT framework. The IPOPT algorithm
requires the solution of (4) at each iteration and M (s(u, po)) is directly related to the matrix in (4)
at the solution. The current version of IPOPT has been adapted for efficient sensitivity
calculations. Specifically, by using a previously factorized form of the matrix in (4), the online
cost of finding the approximate solution of a perturbed problem is only a single backsolve.

4. FAST NMPC BASED ON IPOPT SENSITIVITY

We now combine concepts of the previous two sections to develop a real-time iteration
approach for simultaneous dynamic optimization. In a manner similar to [9], we classify the
NMPC calculation into off-line, background and online components. For the off-line component,
we determine the number of finite elements and collocation points required for accurate solution
of the DAE system. While this task is often problem specific, it is aided by off-line simulations
and is not difficult. In addition, the barrier parameter in IPOPT can be tuned to improve
performance [17]. For instance, u can remain at a small fixed value for all iterations. This
ensures feasibility and robustness by retreating from variable bounds, and it also allows for
‘warm starts’ for successive NLP solutions. For the background component, we assume that the
NLP can be solved within no more than a few sampling times (Ncycc), but that computational
feedback delay needs to be minimal. As a result, we perform items (ii)—(v) in TableI in
background and fully converge the solution with the simultanecous approach. As seen in the
previous section, the simultancous approach is generally faster than competing approaches.
Here, the dominant calculation is the repeated factorization of the large sparse matrix in (4).
Using the fully converged NLP from the background calculation, up to Neyee (=1) steps behind
the current sampling time, the online component uses direct and shifted variants of NLP
sensitivity to calculate an estimated solution with perturbed initial conditions. As in [9, 22], the
cost of the online component is two orders of magnitude less than the background component.
Once a measurement is obtained, the online update of the solution vector requires a single

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 18:800-815
DOI: 10.1002/rnc



808 V. M. ZAVALA, C. D. LAIRD AND T. BIEGLER

backsolve (vi). As seen in (6), the solution error in the perturbed update is also small; it scales
quadratically with the perturbation.
The NLP for the ¢th horizon of an NMPC problem is represented by

N—1

P(6) mings(zy) + Y gilzi» ur)
=0

s.t.zxe1 = zx + Byy
hzi, yiour) =0, k=0,...,N—1
20 = Z({) = po

where y;, € R'™ is a vector of intermediate variables and B denotes a projection matrix between
variables y; and z;. This formulation allows a general Runge—Kutta discretization, including
multiple shooting or collocation on (one or many) finite elements between sampling times. Any
inequalities from (1) can be replaced by appropriate barrier terms as in (4). Also, Z(£) is the
measured or estimated state of the plant at time #,. At the solution of problem P(£), we inject the
control #(f) = uy into the plant.

Having the solution of P(£) we would like to obtain a cheap estimate of the solution to
P(¢ + 1). The optimality conditions for P(f) are

20 = Po

V.gk — A1 + Ak + Vil =0
Vyhiye — B k1 =0
Vugk + Vuhiy, =0 k=0,...,N—1

Zkp1 = Zk + By

h(zi, yi,ux) =0

V.gr+/iv=0

Linearizing the optimality conditions at the solution of P({), we obtain the sensitivity
equations:

0 =Az)—(p—po)

0 =LAz + LY Aug + HE Ayi + Vol Ay — Mgy + A

0= Hszzk + Hfquuk + H}]fyAyk — BT Adyy1 + Vi Ay

0= LE Azi + LE, Au + H Ay + Vi Ay, (7)
0 =Azpy) — Azi — BAyy

0 = V.h Azj + Vi Aug + YVl Ay

0=GAzy + Ady
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with k =0,...,N — 1. Here, we adopt the notation: GX, = V..gi, L\, = V..(gx + hly;), H: =
V.ol ), ete.

Direct variant: The linear system (7) can be written as KAv = r where Av is the perturbation in
the solution of P(¢), r" =[(p —po)" 0 ... 0], and K has a block tridiagonal structure. Let
NeyeleAt be an upper bound on the CPU time needed to solve P(f). Then sensitivity-based
estimates are required for P(€+), j=1,..., Ngyele. The matrix K is already factored in
background at the solution of P(¢) found by IPOPT, and by setting p = Z(¢ + j), the perturbed
solution Av from (7) requires only a single backsolve with K as the online optimization cost. The
error in this solution is O(||Z(€ + j) — 2(¢)||?). However, if this perturbation is large, the solution
with previous active set may not apply and controller performance will deteriorate by assuming
an incorrect active set. This can be observed in the next section.

Shifted variant: If N is sufficiently large and the plant has no disturbances or model mismatch,
ie. (¢ +j)~ z},j>1, and we can use #(¢ + ) = u} directly from the solution of P(¢). On the
other hand, for small ||Z(£+)) — z]’-“||, we can determine (€ +j) from a different perturbed
solution of P({). At time f,;, we can estimate the solution to P({+j) by adding Az; =
Z(C+j) — z;.“ to (7), and making p a variable in (7). In other words, we force the state variable z;
to the plant measurement Z(¢ + j) and we adjust the initial condition parameter Ap = p — py to
compensate. This corresponds to the sensitivity equations for P(f + ) (starting from z;) and
leads to the condensed form written as

K EO Av 0
= == ®)
E' |0 ][Ap W+ -z

where Ej =[—10...0], Ef=[0 ... 70...0]. Again, we take advantage of a previous
factorization of K from P(¢) and shift to problem P(¢ + j) by solving for Ap, where Av relates to
all of the variables in P(¢). Using the existing factorization of K, this system could be solved with
a Schur complement approach, i.c.

—(ET K Eg)Ap = 40+ ) — 7 ©)

The Schur complement requires 7, backsolves with K in background. Although these backsolves
are easily parallelized, this calculation may be expensive for systems with many states. For the
implementation of this method, the main computational tasks are to solve P(¢), factorize K and
construct and factorize E,-TK —-1E, for J < Neyele, using n- backsolves with K in background. Once
Z(€ + j) is obtained, then Ap can be obtained online from (9) and u(¢ + j) is then calculated from
KAy = —EyAp using a single backsolve with factors of K. Once j = Ny the process begins

again with a new background solution of P(¢{).

5. CASE STUDY: NMPC OF A LOW-DENSITY POLYETHYLENE PLANT

To demonstrate this real-time iteration strategy, we examine the performance of both variants
on a large-scale case study. Here, we consider a simulated NMPC scenario for a large-scale high-
pressure low-density polyethylene (LDPE) process presented in [26]. A simplified flowsheet is
presented in Figure 1. In this process, ethylene is polymerized in a long tubular reactor at high
pressures (2000-3000 atm) and temperatures (150-300°C) through a free-radical mechanism.
Accordingly, a large number of compression stages are required to obtain these extreme
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Figure 1. Closed-loop response of different NMPC variants in LDPE process.
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operating conditions. The final product is recovered by flash separation. These flexible processes
can obtain several different grades by adjusting the reactor operating conditions. Here, the
desired final end-use properties, such as the polymer melt index, are obtained by control of the
reactor temperature, pressure and concentration of a chain-transfer agent (usually butane and
propylene), which is used to control the polymer molecular weight.

The process represents a difficult dynamic system. The reactor dynamics are much faster
compared to the slow responses in the recycle loops. Furthermore, long-time delays are present
throughout the compression and separation systems. Due to the exothermic and complex nature
of the polymerization, the reactor temperature and pressure are enforced strictly along the
operating horizon following complex recipes. The main operational problem in these processes
consists of providing fast adjustments to the butane feed and purge stream to keep the melt
index at a desired reference value. This is performed during different operating stages such as
grade transitions (switching between two different operating points) and normal operation
(disturbance rejection).

5.1. Dynamic process model

Due to fast dynamics in the reactor and the enforcement of strict operating conditions, the
overall dynamic model of the plant can be described by a large number of differential balances
around continuous stirred tanks representing the different compression and separation stages of
the process. The dynamic balances considered include four components: ethylene (j = 1), butane
(j = 2), methane (j = 3) and impurities (f = 4). This last component groups several components
present in minor quantities. Nonsteady mass balances for three components are developed while
the fourth component is obtained by difference. Equation (10) shows the balance for the jth
component for every plant unit:
d(Vpw)

BTER = Fm{n — Fw (10)

where F is the mass flow rate (kg/h), V' the equipment volume (m?®), ¢ the time (s), p the gas
density (kg/m3), w/ the inlet weight component of jth component and w; the outlet weight
component of jth component. The gas density is calculated through nonlinear thermodynamic
relations, which significantly increase the difficulty of the model. Most of the complexity of the
dynamic model is caused by the presence of time delays. For simplicity, these delays are lumped
into six overall locations along the process and are directly incorporated into the model by
considering each one as a tube of length L where plug flow is assumed. The resulting component
material balances are given by the following partial differential equations with boundary
conditions:

ow 1ow _

ot + Tz
where T = pA/F represents the associated time delay. The PDEs are transformed to ordinary
differential equations by applying a spatial finite difference scheme with N = 10 intervals. The
resulting large-scale DAE model contains 294 differential and 64 algebraic state variables.

0, w(z0)= n{), w(0,1) = w{n(l) (11)

5.2. Formulation of NMPC problem

In this work, we are interested in obtaining an optimal feedback policy that minimizes the
switching time between steady states corresponding to the production of different polymer
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grades. This minimization is crucial as it leads to substantial reduction of waste product. Since
the melt index is inferred from the butane concentration in the recycle loop, we use this as the
controlled variable and we use the butane feed and purge stream as manipulated variables. The
NMPC problem solved online at every sampling time ¢, is given by

tet+tp
min / (we, (1) = W) + (Fe, () — F&, )P + (Fpu(t) — Fr,)* di

14

s.t. Equations (10)—(11)
2(t) = 2(€), zL<z<zy, YLSYy<yu, uUL<U<uy (12)

where #, is the prediction time, w¢, is the weight fraction of butane in the recycle loop
and superscript r denotes a reference value. Here, we consider equal control and prediction
horizons. Note that this formulation corresponds to the general form (1) if we consider
time intervals k and replace the objective function by introducing an additional state variable
and equation.

5.3. Solution of NMPC problem

Following a simultaneous full-discretization approach, problem (12) is converted into a large-
scale NLP problem. A total of 15 finite elements with three collocation points in each element is
sufficient for the time discretization. The finite elements are placed in order to match sampling
times along the moving horizon. The resulting NLP problem of form (2) contains 27135
constraints, 9360 lower bounds, 9360 upper bounds and 30 degrees of freedom. Since grade
transitions are usually slow, long prediction times on the order of hours are used with sampling
times on the order of minutes. In all our experiments we set #, = 1.5h and At =t — t, =
6 min.

As a first step, we study the off-line solution of problem (12) using IPOPT. Here, we use a
monotone barrier parameter p update with an initial value of 107°, while the rest of the
algorithmic parameters were specified with their default values. Using an average of 10
iterations, the full solution requires 351.5 CPU seconds (3.0 GHz Pentium IV processor, 1 Gb
RAM), while a single factorization requires 33.9 CPU seconds, a single backsolve requires 0.94
CPU seconds and the remaining steps take only 0.12 CPU seconds. Note that the dominant cost
of the total CPU time is the factorization of the KKT matrix. Although it seems feasible to solve
full problems within the specified sampling time, a long computational delay would be
introduced, thus degrading the performance of the controller.

In order to minimize the computational delay, we consider the direct and shifted NLP
sensitivity variants, and compare them with a ideal NMPC approach. For this case study, we set
Neyele = 1 and we introduced model mismatch through strong and random perturbations of the
time delays 7 in the recycle loops. Along with the two variants, we consider the exact solution of
P(£) by neglecting the effect of computational delay on the actual closed-loop response. This
leads to an ideal NMPC performance profile, which cannot be achieved in practice. Performance
of the NMPC approaches is presented in Figure 1. Notice that the ideal policy involves the
saturation of both control valves for the first 2500 s of operation and finally places the flow rates
to values corresponding to the new operating point. It is interesting to observe that the shifted
variant provides close-to-optimal performance of the controller, while the direct variant
encounters problems with active set changes along the prediction horizon. This is easily
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observed at the eighth sampling time (at # = 2500 s) where a response delay of one sampling
time is obtained. In this case, the direct approach retains the previous active set of the purge
stream flow rate, which is one step behind the exact solution. This translates to a large overshoot
for around 10 min of operation, leading to the production of large amounts of off-spec product.
Also, note that it is possible to provide close-to-optimal immediate feedback more often (every
few seconds) by increasing Ncyie and using a finer discretization, even though the full NLP
problem is solved in background every few minutes.

To compare the online computations, the full NLP solution requires an average of 200 s of
online computation. On the other hand, the direct variant requires a negligible amount of online
time (around 0.94 CPU seconds for a single backsolve) with no additional background tasks.
Similarly, the shifted variant requires a negligible online time of around 1.04 CPU seconds for
the solution of the dense reduced system and a final backsolve to obtain the updated solution
vector. However, it requires a considerable amount of additional background time (272 CPU
seconds on average) for the construction of the Schur complement. Although this is done in
background and only once for Ny steps, it may still be important to reduce this computational
cost in order to improve the overall performance of the controller.

Finally, we note that the proposed NLP sensitivity approaches lead to effective warm-starting
strategies for background NLP. In this case, we consider an NMPC scenario involving the
initialization of the full problem at each sampling instant using an approximate solution for
the new initial conditions obtained around the solution of the previous problem. In particular,
the shifted variant provides accurate warm-starts for all the sampling times and reduces the
average number of background NLP iterations from 10 to about two. On the other hand, the
direct variant has inconsistent active sets and does not lead to improved warm starts, although it
does provide exact approximations at the end of the horizon, where no further active set changes
take place.

6. CONCLUSIONS AND FUTURE WORK

With wider application and appreciation of nonlinear model predictive control (NMPC), there
is a continuing need for advanced problem formulations and algorithms that lead to improved
controller performance. This is especially important as NMPC assumes broader roles for online
dynamic optimization beyond regulatory control. Here, we summarize dynamic optimization
strategies and component algorithms that are currently used for NMPC and explore their
computational complexity in addressing more challenging online applications. We note that a
simultaneous collocation-based approach has desirable complexity characteristics, particularly
since the dominant solution steps increase little more than linearly with problem size.
Nevertheless, these calculations are time critical, so these advantages alone do not completely
address future challenges. Instead, we consider the real-time iteration strategy recently
developed in the context of multiple shooting and adapt it to the full-space, collocation-based
approach.

In our context, real-time iterations can be analysed using convergence properties of barrier
NLP algorithms and NLP sensitivity. These lead to strategies where the online component is
very cheap, and requires only a single backsolve of the associated KKT system. As with the
approach in [9], this approach is developed in both direct and shifted variants and the stability
analysis developed in [21,22] can be applied directly. On a large-scale industrial process case

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 18:800-815
DOI: 10.1002/rnc



814 V. M. ZAVALA, C. D. LAIRD AND T. BIEGLER

study, we show that this approach reduces online computations from six CPU minutes to about
1.0 CPU second with almost no sacrifice in controller performance. Therefore, this study
demonstrates that large, rigorous dynamic optimization models can be incorporated efficiently for
NMPC and solved online with minimal computational delay.

A number of improvements can be considered for future work. First, active set handling needs
to be improved. The direct variant handles active set changes poorly in the prediction horizon,
while the shifted variant avoids this problem but with additional background cost. Here, the
estimate for u(£ 4 j) can be improved by additional online iterations, by substituting the updated
residuals of the nonlinear KKT equations (f(v)) into the right-hand side of (8). Second, the real-
time iteration scheme needs to be analysed further to assess nominal and robust stability
properties, using recent results from [4], and to generalize this approach to a broader class of
online dynamic optimization problems. Finally, recent work [27, 28] has shown that real-time
iteration concepts can also be applied to Moving Horizon Estimation problems. Using the same
concepts of background NLP calculations and NLP sensitivity, significant reductions in online
computation have been observed with no loss in performance for the estimator.
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